S-nitrosation of proteins

نویسندگان

  • Fabiola A. Sánchez
  • Ingrid P. Ehrenfeld
  • Walter N. Durán
چکیده

Nitric oxide (NO) is a key factor in inflammation as it regulates microvascular permeability, leukocyte adhesion and wound healing. This mini-review addresses mainly spatial and temporal requirements of NO regulatory mechanisms, with special emphasis on S-nitrosation. Endothelial nitric oxide synthase (eNOS)-derived NO induces S-nitrosation of p120 and β-catenin, particularly in response to platelet-activating factor (PAF), and through traffic and interactions at the adherens junction promotes endothelial hyperpermeability. S-nitrosation is a determinant in vascular processes such as vasodilation and leukocyte-endothelium interactions. Interestingly, NO decreases leukocytes adhesion to endothelium, but the mechanisms are unknown. Advances in NO molecular biology and regulation may serve as a basis for the development of new therapeutic strategies in the treatment of diseases characterized by inflammation such as ischemia-reperfusion injury, stroke, cancer and atherosclerosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Targeted Disruption of Inducible Nitric Oxide Synthase Protects Against Aging, S-Nitrosation, and Insulin Resistance in Muscle of Male Mice

Accumulating evidence has demonstrated that S-nitrosation of proteins plays a critical role in several human diseases. Here, we explored the role of inducible nitric oxide synthase (iNOS) in the S-nitrosation of proteins involved in the early steps of the insulin-signaling pathway and insulin resistance in the skeletal muscle of aged mice. Aging increased iNOS expression and S-nitrosation of ma...

متن کامل

Nitric oxide and posttranslational modification of the vascular proteome: S-nitrosation of reactive thiols.

Nitric oxide (NO*) is known to exert its effects via guanylyl cyclase and cyclic GMP-dependent pathways and by cyclic GMP-independent pathways, including the posttranslational modification of proteins. Much ongoing research is focused on defining the mechanisms of NO*-mediated protein modification, the identity and function of the modified proteins, and the significance of these changes in heal...

متن کامل

Evidence against Stable Protein S-Nitrosylation as a Widespread Mechanism of Post-translational Regulation

S-nitrosation, commonly referred to as S-nitrosylation, is widely regarded as a ubiquitous, stable post-translational modification that directly regulates many proteins. Such a widespread role would appear to be incompatible with the inherent lability of the S-nitroso bond, especially its propensity to rapidly react with thiols to generate disulfide bonds. As anticipated, we observed robust and...

متن کامل

Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation

The S-nitrosation of mitochondrial proteins as a consequence of NO metabolism is of physiological and pathological significance. We previously developed a MitoSNO (mitochondria-targeted S-nitrosothiol) that selectively S-nitrosates mitochondrial proteins. To identify these S-nitrosated proteins, here we have developed a selective proteomic methodology, SNO-DIGE (S-nitrosothiol difference in gel...

متن کامل

S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: a novel mechanism of insulin resistance.

Evidence demonstrates that exogenous nitric oxide (NO) and the NO produced by inducible nitric oxide synthase (iNOS) can induce insulin resistance in muscle. Here, we investigated whether this insulin resistance could be mediated by S-nitrosation of proteins involved in early steps of the insulin signal transduction pathway. Exogenous NO donated by S-nitrosoglutathione (GSNO) induced in vitro a...

متن کامل

SNO spectral counting (SNOSC), a label-free proteomic method for quantification of changes in levels of protein S-nitrosation.

S-Nitrosation plays an important role in regulation of protein function and signal transduction. Discovering S-nitrosated targets is a prerequisite for further functional study. However, current proteomic methods used to quantify S-nitrosation are limited in their applicability to certain types of samples, or by the need for special reagents and complex procedures to obtain the results. Here we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2013